Copied to
clipboard

G = C3312SD16order 432 = 24·33

4th semidirect product of C33 and SD16 acting via SD16/C4=C22

metabelian, supersoluble, monomial

Aliases: C3312SD16, C12.27S32, C337C82C2, C324Q88S3, D12.2(C3⋊S3), (C3×D12).10S3, (C3×C12).115D6, (C32×C6).32D4, C327(D4.S3), (C32×D12).3C2, C6.9(C327D4), C2.5(C336D4), C33(Dic6⋊S3), C6.21(D6⋊S3), C32(C329SD16), C3213(Q82S3), (C32×C12).11C22, C4.16(S3×C3⋊S3), C12.11(C2×C3⋊S3), (C3×C324Q8)⋊2C2, (C3×C6).87(C3⋊D4), SmallGroup(432,439)

Series: Derived Chief Lower central Upper central

C1C32×C12 — C3312SD16
C1C3C32C33C32×C6C32×C12C32×D12 — C3312SD16
C33C32×C6C32×C12 — C3312SD16
C1C2C4

Generators and relations for C3312SD16
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, dad-1=a-1, ae=ea, bc=cb, dbd-1=b-1, be=eb, dcd-1=ece=c-1, ede=d3 >

Subgroups: 656 in 152 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, D4, Q8, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, SD16, C3×S3, C3×C6, C3×C6, C3×C6, C3⋊C8, Dic6, D12, C3×D4, C3×Q8, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C62, D4.S3, Q82S3, S3×C32, C32×C6, C324C8, C3×Dic6, C3×D12, C324Q8, D4×C32, C3×C3⋊Dic3, C32×C12, S3×C3×C6, Dic6⋊S3, C329SD16, C337C8, C32×D12, C3×C324Q8, C3312SD16
Quotients: C1, C2, C22, S3, D4, D6, SD16, C3⋊S3, C3⋊D4, S32, C2×C3⋊S3, D4.S3, Q82S3, D6⋊S3, C327D4, S3×C3⋊S3, Dic6⋊S3, C329SD16, C336D4, C3312SD16

Smallest permutation representation of C3312SD16
On 144 points
Generators in S144
(1 135 66)(2 67 136)(3 129 68)(4 69 130)(5 131 70)(6 71 132)(7 133 72)(8 65 134)(9 33 54)(10 55 34)(11 35 56)(12 49 36)(13 37 50)(14 51 38)(15 39 52)(16 53 40)(17 111 120)(18 113 112)(19 105 114)(20 115 106)(21 107 116)(22 117 108)(23 109 118)(24 119 110)(25 89 59)(26 60 90)(27 91 61)(28 62 92)(29 93 63)(30 64 94)(31 95 57)(32 58 96)(41 75 100)(42 101 76)(43 77 102)(44 103 78)(45 79 104)(46 97 80)(47 73 98)(48 99 74)(81 138 123)(82 124 139)(83 140 125)(84 126 141)(85 142 127)(86 128 143)(87 144 121)(88 122 137)
(1 91 106)(2 107 92)(3 93 108)(4 109 94)(5 95 110)(6 111 96)(7 89 112)(8 105 90)(9 100 88)(10 81 101)(11 102 82)(12 83 103)(13 104 84)(14 85 97)(15 98 86)(16 87 99)(17 58 132)(18 133 59)(19 60 134)(20 135 61)(21 62 136)(22 129 63)(23 64 130)(24 131 57)(25 113 72)(26 65 114)(27 115 66)(28 67 116)(29 117 68)(30 69 118)(31 119 70)(32 71 120)(33 41 122)(34 123 42)(35 43 124)(36 125 44)(37 45 126)(38 127 46)(39 47 128)(40 121 48)(49 140 78)(50 79 141)(51 142 80)(52 73 143)(53 144 74)(54 75 137)(55 138 76)(56 77 139)
(1 27 20)(2 21 28)(3 29 22)(4 23 30)(5 31 24)(6 17 32)(7 25 18)(8 19 26)(9 122 75)(10 76 123)(11 124 77)(12 78 125)(13 126 79)(14 80 127)(15 128 73)(16 74 121)(33 137 100)(34 101 138)(35 139 102)(36 103 140)(37 141 104)(38 97 142)(39 143 98)(40 99 144)(41 54 88)(42 81 55)(43 56 82)(44 83 49)(45 50 84)(46 85 51)(47 52 86)(48 87 53)(57 110 70)(58 71 111)(59 112 72)(60 65 105)(61 106 66)(62 67 107)(63 108 68)(64 69 109)(89 113 133)(90 134 114)(91 115 135)(92 136 116)(93 117 129)(94 130 118)(95 119 131)(96 132 120)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 49)(2 52)(3 55)(4 50)(5 53)(6 56)(7 51)(8 54)(9 65)(10 68)(11 71)(12 66)(13 69)(14 72)(15 67)(16 70)(17 43)(18 46)(19 41)(20 44)(21 47)(22 42)(23 45)(24 48)(25 85)(26 88)(27 83)(28 86)(29 81)(30 84)(31 87)(32 82)(33 134)(34 129)(35 132)(36 135)(37 130)(38 133)(39 136)(40 131)(57 121)(58 124)(59 127)(60 122)(61 125)(62 128)(63 123)(64 126)(73 107)(74 110)(75 105)(76 108)(77 111)(78 106)(79 109)(80 112)(89 142)(90 137)(91 140)(92 143)(93 138)(94 141)(95 144)(96 139)(97 113)(98 116)(99 119)(100 114)(101 117)(102 120)(103 115)(104 118)

G:=sub<Sym(144)| (1,135,66)(2,67,136)(3,129,68)(4,69,130)(5,131,70)(6,71,132)(7,133,72)(8,65,134)(9,33,54)(10,55,34)(11,35,56)(12,49,36)(13,37,50)(14,51,38)(15,39,52)(16,53,40)(17,111,120)(18,113,112)(19,105,114)(20,115,106)(21,107,116)(22,117,108)(23,109,118)(24,119,110)(25,89,59)(26,60,90)(27,91,61)(28,62,92)(29,93,63)(30,64,94)(31,95,57)(32,58,96)(41,75,100)(42,101,76)(43,77,102)(44,103,78)(45,79,104)(46,97,80)(47,73,98)(48,99,74)(81,138,123)(82,124,139)(83,140,125)(84,126,141)(85,142,127)(86,128,143)(87,144,121)(88,122,137), (1,91,106)(2,107,92)(3,93,108)(4,109,94)(5,95,110)(6,111,96)(7,89,112)(8,105,90)(9,100,88)(10,81,101)(11,102,82)(12,83,103)(13,104,84)(14,85,97)(15,98,86)(16,87,99)(17,58,132)(18,133,59)(19,60,134)(20,135,61)(21,62,136)(22,129,63)(23,64,130)(24,131,57)(25,113,72)(26,65,114)(27,115,66)(28,67,116)(29,117,68)(30,69,118)(31,119,70)(32,71,120)(33,41,122)(34,123,42)(35,43,124)(36,125,44)(37,45,126)(38,127,46)(39,47,128)(40,121,48)(49,140,78)(50,79,141)(51,142,80)(52,73,143)(53,144,74)(54,75,137)(55,138,76)(56,77,139), (1,27,20)(2,21,28)(3,29,22)(4,23,30)(5,31,24)(6,17,32)(7,25,18)(8,19,26)(9,122,75)(10,76,123)(11,124,77)(12,78,125)(13,126,79)(14,80,127)(15,128,73)(16,74,121)(33,137,100)(34,101,138)(35,139,102)(36,103,140)(37,141,104)(38,97,142)(39,143,98)(40,99,144)(41,54,88)(42,81,55)(43,56,82)(44,83,49)(45,50,84)(46,85,51)(47,52,86)(48,87,53)(57,110,70)(58,71,111)(59,112,72)(60,65,105)(61,106,66)(62,67,107)(63,108,68)(64,69,109)(89,113,133)(90,134,114)(91,115,135)(92,136,116)(93,117,129)(94,130,118)(95,119,131)(96,132,120), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,49)(2,52)(3,55)(4,50)(5,53)(6,56)(7,51)(8,54)(9,65)(10,68)(11,71)(12,66)(13,69)(14,72)(15,67)(16,70)(17,43)(18,46)(19,41)(20,44)(21,47)(22,42)(23,45)(24,48)(25,85)(26,88)(27,83)(28,86)(29,81)(30,84)(31,87)(32,82)(33,134)(34,129)(35,132)(36,135)(37,130)(38,133)(39,136)(40,131)(57,121)(58,124)(59,127)(60,122)(61,125)(62,128)(63,123)(64,126)(73,107)(74,110)(75,105)(76,108)(77,111)(78,106)(79,109)(80,112)(89,142)(90,137)(91,140)(92,143)(93,138)(94,141)(95,144)(96,139)(97,113)(98,116)(99,119)(100,114)(101,117)(102,120)(103,115)(104,118)>;

G:=Group( (1,135,66)(2,67,136)(3,129,68)(4,69,130)(5,131,70)(6,71,132)(7,133,72)(8,65,134)(9,33,54)(10,55,34)(11,35,56)(12,49,36)(13,37,50)(14,51,38)(15,39,52)(16,53,40)(17,111,120)(18,113,112)(19,105,114)(20,115,106)(21,107,116)(22,117,108)(23,109,118)(24,119,110)(25,89,59)(26,60,90)(27,91,61)(28,62,92)(29,93,63)(30,64,94)(31,95,57)(32,58,96)(41,75,100)(42,101,76)(43,77,102)(44,103,78)(45,79,104)(46,97,80)(47,73,98)(48,99,74)(81,138,123)(82,124,139)(83,140,125)(84,126,141)(85,142,127)(86,128,143)(87,144,121)(88,122,137), (1,91,106)(2,107,92)(3,93,108)(4,109,94)(5,95,110)(6,111,96)(7,89,112)(8,105,90)(9,100,88)(10,81,101)(11,102,82)(12,83,103)(13,104,84)(14,85,97)(15,98,86)(16,87,99)(17,58,132)(18,133,59)(19,60,134)(20,135,61)(21,62,136)(22,129,63)(23,64,130)(24,131,57)(25,113,72)(26,65,114)(27,115,66)(28,67,116)(29,117,68)(30,69,118)(31,119,70)(32,71,120)(33,41,122)(34,123,42)(35,43,124)(36,125,44)(37,45,126)(38,127,46)(39,47,128)(40,121,48)(49,140,78)(50,79,141)(51,142,80)(52,73,143)(53,144,74)(54,75,137)(55,138,76)(56,77,139), (1,27,20)(2,21,28)(3,29,22)(4,23,30)(5,31,24)(6,17,32)(7,25,18)(8,19,26)(9,122,75)(10,76,123)(11,124,77)(12,78,125)(13,126,79)(14,80,127)(15,128,73)(16,74,121)(33,137,100)(34,101,138)(35,139,102)(36,103,140)(37,141,104)(38,97,142)(39,143,98)(40,99,144)(41,54,88)(42,81,55)(43,56,82)(44,83,49)(45,50,84)(46,85,51)(47,52,86)(48,87,53)(57,110,70)(58,71,111)(59,112,72)(60,65,105)(61,106,66)(62,67,107)(63,108,68)(64,69,109)(89,113,133)(90,134,114)(91,115,135)(92,136,116)(93,117,129)(94,130,118)(95,119,131)(96,132,120), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,49)(2,52)(3,55)(4,50)(5,53)(6,56)(7,51)(8,54)(9,65)(10,68)(11,71)(12,66)(13,69)(14,72)(15,67)(16,70)(17,43)(18,46)(19,41)(20,44)(21,47)(22,42)(23,45)(24,48)(25,85)(26,88)(27,83)(28,86)(29,81)(30,84)(31,87)(32,82)(33,134)(34,129)(35,132)(36,135)(37,130)(38,133)(39,136)(40,131)(57,121)(58,124)(59,127)(60,122)(61,125)(62,128)(63,123)(64,126)(73,107)(74,110)(75,105)(76,108)(77,111)(78,106)(79,109)(80,112)(89,142)(90,137)(91,140)(92,143)(93,138)(94,141)(95,144)(96,139)(97,113)(98,116)(99,119)(100,114)(101,117)(102,120)(103,115)(104,118) );

G=PermutationGroup([[(1,135,66),(2,67,136),(3,129,68),(4,69,130),(5,131,70),(6,71,132),(7,133,72),(8,65,134),(9,33,54),(10,55,34),(11,35,56),(12,49,36),(13,37,50),(14,51,38),(15,39,52),(16,53,40),(17,111,120),(18,113,112),(19,105,114),(20,115,106),(21,107,116),(22,117,108),(23,109,118),(24,119,110),(25,89,59),(26,60,90),(27,91,61),(28,62,92),(29,93,63),(30,64,94),(31,95,57),(32,58,96),(41,75,100),(42,101,76),(43,77,102),(44,103,78),(45,79,104),(46,97,80),(47,73,98),(48,99,74),(81,138,123),(82,124,139),(83,140,125),(84,126,141),(85,142,127),(86,128,143),(87,144,121),(88,122,137)], [(1,91,106),(2,107,92),(3,93,108),(4,109,94),(5,95,110),(6,111,96),(7,89,112),(8,105,90),(9,100,88),(10,81,101),(11,102,82),(12,83,103),(13,104,84),(14,85,97),(15,98,86),(16,87,99),(17,58,132),(18,133,59),(19,60,134),(20,135,61),(21,62,136),(22,129,63),(23,64,130),(24,131,57),(25,113,72),(26,65,114),(27,115,66),(28,67,116),(29,117,68),(30,69,118),(31,119,70),(32,71,120),(33,41,122),(34,123,42),(35,43,124),(36,125,44),(37,45,126),(38,127,46),(39,47,128),(40,121,48),(49,140,78),(50,79,141),(51,142,80),(52,73,143),(53,144,74),(54,75,137),(55,138,76),(56,77,139)], [(1,27,20),(2,21,28),(3,29,22),(4,23,30),(5,31,24),(6,17,32),(7,25,18),(8,19,26),(9,122,75),(10,76,123),(11,124,77),(12,78,125),(13,126,79),(14,80,127),(15,128,73),(16,74,121),(33,137,100),(34,101,138),(35,139,102),(36,103,140),(37,141,104),(38,97,142),(39,143,98),(40,99,144),(41,54,88),(42,81,55),(43,56,82),(44,83,49),(45,50,84),(46,85,51),(47,52,86),(48,87,53),(57,110,70),(58,71,111),(59,112,72),(60,65,105),(61,106,66),(62,67,107),(63,108,68),(64,69,109),(89,113,133),(90,134,114),(91,115,135),(92,136,116),(93,117,129),(94,130,118),(95,119,131),(96,132,120)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,49),(2,52),(3,55),(4,50),(5,53),(6,56),(7,51),(8,54),(9,65),(10,68),(11,71),(12,66),(13,69),(14,72),(15,67),(16,70),(17,43),(18,46),(19,41),(20,44),(21,47),(22,42),(23,45),(24,48),(25,85),(26,88),(27,83),(28,86),(29,81),(30,84),(31,87),(32,82),(33,134),(34,129),(35,132),(36,135),(37,130),(38,133),(39,136),(40,131),(57,121),(58,124),(59,127),(60,122),(61,125),(62,128),(63,123),(64,126),(73,107),(74,110),(75,105),(76,108),(77,111),(78,106),(79,109),(80,112),(89,142),(90,137),(91,140),(92,143),(93,138),(94,141),(95,144),(96,139),(97,113),(98,116),(99,119),(100,114),(101,117),(102,120),(103,115),(104,118)]])

48 conjugacy classes

class 1 2A2B3A···3E3F3G3H3I4A4B6A···6E6F6G6H6I6J···6Q8A8B12A···12M12N12O
order1223···33333446···666666···68812···121212
size11122···244442362···2444412···1254544···43636

48 irreducible representations

dim111122222244444
type+++++++++-+-
imageC1C2C2C2S3S3D4D6SD16C3⋊D4S32D4.S3Q82S3D6⋊S3Dic6⋊S3
kernelC3312SD16C337C8C32×D12C3×C324Q8C3×D12C324Q8C32×C6C3×C12C33C3×C6C12C32C32C6C3
# reps1111411521044148

Matrix representation of C3312SD16 in GL8(𝔽73)

10000000
01000000
0071700000
00110000
000007200
000017200
00000010
00000001
,
10000000
01000000
0071700000
00110000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
00001000
00000100
0000007272
00000010
,
1269000000
180000000
00620000
0019670000
00000100
00001000
00000010
0000007272
,
2958000000
5644000000
00100000
00010000
000072000
000007200
00000010
0000007272

G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,71,1,0,0,0,0,0,0,70,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,71,1,0,0,0,0,0,0,70,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0],[12,18,0,0,0,0,0,0,69,0,0,0,0,0,0,0,0,0,6,19,0,0,0,0,0,0,2,67,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72],[29,56,0,0,0,0,0,0,58,44,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72] >;

C3312SD16 in GAP, Magma, Sage, TeX

C_3^3\rtimes_{12}{\rm SD}_{16}
% in TeX

G:=Group("C3^3:12SD16");
// GroupNames label

G:=SmallGroup(432,439);
// by ID

G=gap.SmallGroup(432,439);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,64,254,135,58,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^3>;
// generators/relations

׿
×
𝔽